Learning Bayesian network parameters under order constraints

نویسندگان

  • A. J. Feelders
  • Linda C. van der Gaag
چکیده

We consider the problem of learning the parameters of a Bayesian network from data, while taking into account prior knowledge about the signs of influences between variables. Such prior knowledge can be readily obtained from domain experts. We show that this problem of parameter learning is a special case of isotonic regression and provide a simple algorithm for computing isotonic estimates. Our experimental results for a small Bayesian network in the medical domain show that taking prior knowledge about the signs of influences into account leads to an improved fit of the true distribution, especially when only a small sample of data is available. More importantly, however, the isotonic estimator provides parameter estimates that are consistent with the specified prior knowledge, thereby resulting in a network that is more likely to be accepted by experts in its domain of application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Network Learning with Parameter Constraints

The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of training data. This paper considers a variety of types of domain knowledge for constraining parameter estimates when learning Bayesian Networks. In particular, we consider domain knowledge that constrains the values or ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

Learning Bayesian network parameters under equivalence constraints

We propose a principled approach for learning parameters in Bayesian networks from incomplete datasets, where the examples of a dataset are subject to equivalence constraints. These equivalence constraints arise from datasets where examples are tied together, in that we may not know the value of a particular variable, but whatever that value is, we know it must be the same across different exam...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2006